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1
ION IMPLANTATION AND ANNEALING FOR
THIN FILM CRYSTALLINE SOLAR CELLS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application also claims the benefit of provisional
patent application 61/490,859 filed on May 27,2011, which is
hereby incorporated by reference in its entirety.

This application is also a continuation-in-part of U.S.
patent application Ser. No. 12/774,713 filed May 5, 2010 now
U.S. Pat. No. 8,420,435 issued Apr. 16, 2013 which claims the
benefit of U.S. Provisional Patent Application No. 61/175,
698 filed May 5, 2009, all of which are hereby incorporated
by reference in their entirety.

FIELD

This disclosure relates in general to the field of photovol-
taics and solar cells, and more particularly to methods for
manufacturing thin-film solar cells (TFSCs). More particu-
larly, the present disclosure provides ion implantation appli-
cations for manufacturing Thin-Film Crystalline Silicon
Solar Cells (TFSC).

BACKGROUND

Ion implantation involves implantation of ions of certain
elements into a solid and is a standard technique used in the
fabrication of semiconductor devices. The implantation of
dopant atoms such as phosphorous (P), arsenic (As), and
boron (B) may be used to form semiconductor junctions,
while the implantation of oxygen may be used in silicon-on-
oxide (SOI) devices. Additionally, it has been reported that
crystalline silicon (c-Si) solar cells have been manufactured
using ion implantation methods to form the p-n junctions.
However, these efforts are directed towards planar crystalline
silicon wafers. In current manufacturing methods for thin-
film crystalline silicon solar cell (TFSC), either planar or
three dimensional cells, the p-n junctions are often formed by
either POCI3-based doping, or a phosphorous compound
deposition or spray-on followed by annealing.

Ionimplantation of P and B for forming emitters ina p-type
or n-type silicon substrate followed by a suitable annealing
treatment have been shown to yield solar cells with high
efficiency. However, current ion implantation efforts are lim-
ited to planar, thick c-Si wafers (typically =200 um).

High efficiency c¢-Si solar cells have been made on very
thin wafers, down to 45 um, by thinning down the conven-
tional ¢c-Si wafers from bulk silicon ingots or bricks, using
integrated circuits (IC) packaging techniques. However, this
approach is often not practical because of the high cost. C-Si
Thin-Film Solar Cells (TFSC) may be advantageously made
by depositing a thin layer of ¢c-Si on a suitable substrate or by
slicing a ¢-Si ingot into thin wafers using advanced wire
sawing or other known techniques such as hydrogen implan-
tation followed by annealing to cause thin wafer separation.

Often, high performance thin-film silicon substrates
(TFSS) are made by depositing an epitaxial crystalline silicon
layer according to chemical vapor deposition (CVD) process.
Solar cells created in this epitaxial silicon deposition method
may be planar or have a well defined structure. Although, in
principle, any three-dimensional surface structure is possible
for 3-D cells, various performance limitations make certain
3-D structures more advantageous—such as pyramidal or
prism based three-dimensional surface features.
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The current standard technique for the formation of selec-
tive emitters involves several steps. Usually, the full front
surface of a p-type wafer is lightly doped using the POCI3
based process or a process involving spraying a phosphorous-
compound followed by anneal. Then a passivating dielectric
is deposited on the front surface of the silicon substrate. The
regions that are desired to be metallization contacts are then
selectively opened in this dielectric, usually by a laser abla-
tion or an etch gel process. A second doping process is then
carried out to selectively dope these localized regions with a
high concentration of phosphorous. However, this process is
often lengthy, costly, and inefficient.

When forming homogeneous emitter layers on a TFSS,
controlling the dopant profile may provide higher efficiency.
To maximize current collection from the solar cell, a good
‘blue response’ is required. This requires the maximum phos-
phorous content near the surface to be less than 1E21 cm-3
from the surface and the depth of the emitter to be preferably
in the range of 0.3 to 0.5 um thick. Because of this, there is a
growing need in the solar industry for shallow emitters. How-
ever, the current industrial emitter formation processes, such
as POCI3-based doping, phosphosilicate (PSG) deposition,
or phosphoric acid spray-on followed by in-line anneal, do
not provide control of the phosphorous concentration and
depth independently. Thus, the emitter characteristics are
solely determined by the temperature and time used for the
doping anneal.

Further, the lifetime of minority charge carriers is greatly
reduced at concentrations above 1E18 cm-3. For maximum
blue response this would appear to be the upper limit of the
dopant concentration in the emitter. However, this would lead
to very high emitter sheet resistance and high series resistance
and low fill factor (FF) and low current density (Jsc). There-
fore, a thin higher doped region near the surface is desired.
However, current dopant profile controlling methodology is
limited.

SUMMARY

Therefore a need has arisen for a simplified manufacturing
method for forming a thin-film solar cell. Base regions, emit-
ter regions, and front surface field regions are formed through
ion implantation and annealing processes.

In accordance with the disclosed subject matter, applica-
tions of ion implantation and subsequent annealing activation
in the manufacturing of thin-film crystalline silicon (c-Si)
solar cells are provided that substantially reduce disadvan-
tages of prior art methods.

Technical advantages of the disclosed methods may
include utilizing a combination of the implantation annealing
process with a passivation processes, such as oxidation, to
simultaneously obtain high quality surface passivation. Yet
another technical advantage may include the utilization of the
field effect to enhance passivation—this may be achieved by
suitably charging the overlying dielectric using ion implan-
tation.

These and other advantages of the disclosed subject matter,
as well as additional novel features, will be apparent from the
description provided herein. The intent of this summary is not
to be a comprehensive description of the subject matter, but
rather to provide a short overview of some of the subject
matter’s functionality. Other systems, methods, features and
advantages here provided will become apparent to one with
skill in the art upon examination of the following FIGURES
and detailed description. It is intended that all such additional
systems, methods, features and advantages included within
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this description, be within the scope of the claims of subse-
quently filed applications based on this provisional.

BRIEF DESCRIPTION OF THE DRAWINGS

The features, nature, and advantages of the disclosed sub-
ject matter will become more apparent from the detailed
description set forth below when taken in conjunction with
the accompanying drawings, wherein:

FIGS. 1A and 1B show a top and cross-sectional view,
respectively, of an example of a pyramidal three-dimensional
thin-film silicon substrate (TFSS);

FIGS. 2A and 2B show a top and cross-sectional view,
respectively, of an example of a three-dimensional thin-film
silicon substrate (TFSS) with prism surface features;

FIG. 3 illustrates a pyramidal three-dimensional thin-film
solar cell with a standard configuration of frontside and back-
side contacts;

FIG. 4 illustrates a prism three-dimensional thin-film solar
cell with a standard configuration of frontside and backside
contacts;

FIG. 5 is a graph representing an idealized dopant profile
for homogeneous emitters;

FIG. 6 shows an ion implantation process for variable
doping on pyramidal three-dimensional TFSS;

FIG. 7 shows an angled ion implantation process on pyra-
midal three-dimensional TFSS;

FIG. 8 illustrates a pyramidal three-dimensional thin-film
solar cell with selective frontside emitters;

FIG. 9 illustrates a pyramidal three-dimensional thin-film
solar cell with all backside contacts;

FIG. 10 illustrates a planar thin-film solar cell with all
backside contacts;

FIGS. 11A through 11B FIG. 11 A show a process flow for
the formation of a reusable template for forming a crystalline
thin-film silicon solar cell;

FIGS. 12A through 13D show the process flow for the
formation of a front contact crystalline thin-film silicon solar
cell in accordance with the disclosed subject matter;

FIGS. 14A through 15D show the process flow for the
formation of a back contact crystalline thin-film silicon solar
cell in accordance with the disclosed subject matter;

FIGS. 16A through 16H show the process flow for the
formation of a back contact planar crystalline thin-film sili-
con solar cell in accordance with the disclosed subject matter;

FIG. 17 is a process flow for commercially manufacturing
an all back contact back-junction solar cell using planar thin
films;

FIG. 18 is a cross section of a back contact/back junction
solar cell structure;

FIG. 19 is a modified process flow for the formation of
islands (discrete) of isolated base contacts;

FIGS. 20 to 24 are diagrams of a solar cell after key fabri-
cation steps of FIG. 19;

FIG. 25 is a process flow embodiment for forming a selec-
tive emitter;

FIG. 26 shows a cell pattern with discrete isolated base and
emitter;

FIG. 27 shows an alternative cell pattern embodiment;

FIG. 28 are graphs showing simulation results of FSF
dopant concentration;

FIGS. 29A-C are cross sections of a solar cell after FSF
formation process steps;

FIG. 30 is process flow to form a solar cell with an FSF
layer;

FIG. 31 is a combined process flow in accordance with the
disclosed subject matter;
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FIG. 32 is a process flow in accordance with the disclosed
subject matter; and

FIG. 33 is a diagram of a cross section of the solar cell
formed in accordance with the disclosed subject matter.

DETAIL DESCRIPTION

The following description is not to be taken in a limiting
sense, but is made for the purpose of describing the general
principles of the present disclosure. The scope of the present
disclosure should be determined with reference to the claims.
And although described with reference to the manufacture of
planar thin-film solar cells and three-dimensional thin-film
solar cells with pyramidal and prism surface features, a per-
son skilled in the art could apply the principles discussed
herein to the manufacture of all structural types of thin-film
solar cells.

Although described with reference to specific embodi-
ments, one skilled in the art could apply the principles dis-
cussed herein to other areas and/or embodiments. A preferred
semiconductor material for the 3-D TFSS is crystalline sili-
con (c-Si), although other semiconductor materials may also
be used. One embodiment uses monocrystalline silicon as the
thin film semiconductor material. Other embodiments use
multicrystalline silicon, polycrystalline silicon, microcrystal-
line silicon, amorphous silicon, porous silicon, and/or a com-
bination thereof. The designs here are also applicable to other
semiconductor materials including but not limited to germa-
nium, silicon germanium, silicon carbide, a crystalline com-
pound semiconductor, or a combination thereof. Additional
applications include copper indium gallium selenide (CIGS)
and cadmium telluride semiconductor thin films.

Further, in this application the term “front” and “back™ are
used to refer to the position of the metal contacts on the solar
cell. A front contact solar cell, or frontside contact, is one
which positioned on the solar cell side facing towards the
light. A back contact solar cell, or backside contact, is one
which is positioned on the solar cell side facing away from the
light.

Although the disclosure describes phosphorous ion
implantation to form emitters and born implantation to form
BSFs for p-type TFSCs, the same principles apply to B
implantation to form emitters and P implantation to form
BSFs for n-type TFSCs.

Although the disclosure has typically described P and B
implantation for n and p doping, respectively, other elements
such as As and Sb may be used for n doping, and Al, Ga, In,
may be used for p doping.

Those with skill in the arts will recognize that the disclosed
embodiments have relevance to a wide variety of areas in
addition to those specific examples described below.

The present disclosure describes the use of ion implanta-
tion technique in the manufacture of 3-dimensional thin-film
crystalline silicon solar cells (TFSC), including those with
pyramidal and prism unit cell structures. The present disclo-
sure also describes the use of ion implantation technique in
the manufacture of planar thin film crystalline silicon (c-Si)
solar cells (TFSC). The present disclosure describes the use
of'ion implantation to form emitter regions, selective emitter
regions, base regions, selective base regions, back surface
fields, and front surface fields in a TFSC and the application
of ion implantation methods to form the p-n junction for
TFSC.

Further, the present disclosure enables the use of ion
implantation to independently control the dopant concentra-
tion and the emitter depth. The dopant profile control, some-
times referred to as profile engineering of emitters, is used to
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maximize the solar cell performance including but not limited
to blue response, Voc, and current collection.

FIGS. 1A and 1B show a top and cross-sectional view,
respectively, of an example of a pyramidal three-dimensional
thin-film silicon substrate (TFSS), which also may be referred
to as a wafer. FIG. 1A is a top view of an embodiment of a
pyramidal TFSS comprised of large pyramidal cavities 10
and small pyramidal cavities 12 on a silicon substrate. FIG.
1B is a cross-section of the substrate shown in FIG. 1A,
substrate 14, showing small pyramidal cavities 16 and large
pyramidal cavities 18. It should be noted that the pyramidal
structures may have flat top and bottom regions or may end in
an angled apex/tips (as shown in FIG. 1B).

FIGS. 2A and 2B show a top and cross-sectional view,
respectively, of an example of a three-dimensional thin-film
silicon substrate (TFSS) with prism surface features. FIG. 2A
is atop view of an embodiment of a prism TFSS comprised of
hexagonal prism structures 20 on a silicon substrate. FIG. 2B
is a cross-section of the substrate shown in FIG. 2A, substrate
22, showing hexagonal prism cavities 24.

One method for forming planar or three-dimensional
TFSSs involves using an initial thick wafer as a substrate. The
substrate may be mono- or multi-crystalline. To obtain a 3-D
structure, the substrate surface may be patterned using tech-
niques such as lithography. Next, a porous silicon structure is
created on the surface. This is followed by epitaxially depos-
iting the desired thickness of the silicon using techniques
such as chemical vapor deposition (CVD). The epitaxial sili-
con layer is then dislodged from the porous silicon layer by
mechanical or chemical means. This results in a wafer with a
desired thickness and a planar or 3-D structure. The example
thin-film silicon substrates shown in FIGS. 1 and 2 may be
formed using this method.

In one embodiment, the present disclosure employs thin
film solar cells that have a three-dimensional structure where
a desired structural pattern has been formed using MEMS
type processing.

FIG. 3 illustrates a pyramidal three-dimensional thin-film
solar cell with a standard configuration of frontside (the solar
cell side facing the light) and backside contacts positioned on
the surface of the cell. P-type (P+) base 30, often an epitaxial
silicon layer, has been doped according to an ion implantation
process to create N-type (N+) emitter layer 32 and p-type
(P++) back surface field 34. Emitter metal 38 and base metal
40 is an electroplated or electroless plated single or multilayer
high-conductivity metallized regions (silver, aluminum,
nickel, titanium, cobalt, or tantalum)—shown, emitter metal
38 is silver and base metal 40 is aluminum. Alternatively, the
metal layer could be inkjet dispensed. Anti-reflection coating
36 may also serve as a frontside passivation layer given a
controlled thickness. In this embodiment, the emitter metal
contacts are formed in continuous metal lines, i.e. fingers and
busbars on the 3-D TFSC top surface. However, because the
base metal contacts have been formed on the inverted pyra-
midal apex regions on the backside of the 3-D TFSS,; the base
metal contacts are isolated regions.

The following describes the formation of N+ emitter for a
p-type base ¢-Si TFSC material. The same procedures may be
used to make P+ emitter for an n-type base ¢-Si TFSC mate-
rial. To form an N+ emitter in a p-type silicon TFSC, the
dopant species may be P, As, and Sb, while B, Al, Ga, and In
may be used to form P+ emitter in an n-type silicon TFSC
substrate.

Ion implantation of P and B for forming the emitter in a
p-type and n-type silicon, respectively, followed by a suitable
annealing treatment, have been shown to yield solar cells with
high efficiency. The present disclosure provides a similar P
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and B ion implantation combined with a suitable annealing
treatment to form emitters in thin-film planar and three-di-
mensional solar cells in p-type or n-type silicon, respectively.

In one embodiment, the ion implantation methods for
forming a homogenous emitter layer 32 and back surface field
34 include forming a homogeneous phosphorous doped emit-
ter in the front surface of the substrate by using ion implan-
tation after manufacturing a 3-D thin-film ¢-Si p- type wafer.
The back surface field is created by implanting a P-type
dopant such as boron. The cell is then completed using stan-
dard passivation and metallization techniques.

FIG. 4 illustrates a prism three-dimensional thin-film solar
cell with a standard configuration of frontside (light side) and
backside contacts positioned on the surface of the cell. P-type
(P+) base 50, often an epitaxial silicon layer, has been doped
according to an ion implantation process to create N-type
(N+) emitter layer 52. Back surface dielectric 54 acts as a
passivation layer. Shown, emitter metal 58 is silver and base
metal 60 is aluminum. Anti-reflection coating 56 is an optical
coating is an optical coating applied to the surface of the
TFSC to reduce reflection.

As in FIG. 3, emitter layer 52 may be created using phos-
phorous implantation and back surface dielectric 54 may be
created using boron implantation. The TFSC depicted in FIG.
4 shows the metal to contact the back surface through a
number of localized contacts opened in the back surface
dielectric. The contact resistance of these contacts may be
lowered using boron implantation. Alternatively, instead of
these localized contacts a back surface field may be created
using boron implantation.

For homogeneous emitter layers, using blanket implanta-
tion control of the dopant profile can provide higher effi-
ciency. To maximize current collection from the solar cell, a
good ‘blue response’ is required. This requires the maximum
phosphorous content near the surface to be less than 1E21
cm-3 and the depth of the emitter to be preferably in the range
of 0.3 to 0.5 um. Hence, the solar industry is moving to
shallow emitters. However, the current industrial emitter for-
mation processes, such as POCI3-based doping or PSG depo-
sition or phosphoric acid spray-on followed by in-line anneal,
do not provide the control of the phosphorous concentration
and depth independently. The emitter characteristics are
solely determined by the temperature and time used for the
doping anneal. On the other hand, ion implantation provides
the ability to make shallow junctions of desired dopant con-
centrations by the control of ion dose and energy. The use of
the disclosed ion implantation process thus makes it possible
to obtain emitters with the desired surface dopant concentra-
tion, profile, and depth. Implanted emitters also eliminate the
phosphorus dead layer and other complications commonly
associated with POCl;-doped emitters.

FIG. 5 is a graph representing an idealized dopant profile
for homogeneous emitters in dopant concentration (atoms/
cm?) over junction depth. Such a precise control of the dopant
profile, sometimes referred to as profile engineering, may be
only possible using a precision technology such as ion
implantation. Shown, a very thin layer (<0.1 um) near the
surface of the wafer has a high dopant concentration (up to
1e21/cm3) while the rest of the emitter has a dopant concen-
tration close to 1E18 atoms/cm3.

Alternatively, higher efficiency of solar cells may be
obtained using the ‘selective emitter’ approach. The current
standard technique for the formation of selective emitters
involves several steps. First, the full front surface of a p-type
wafer is lightly doped using the POCI3 based process or a
process involving spraying a phosphorous-compound fol-
lowed by anneal. Then a passivating dielectric is deposited on
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the front surface. The regions that are desired to be contacted
by metal are then selectively opened in this dielectric, either
using laser ablation or etch gel. A second doping process is
then carried out to selectively dope these localized regions
with a high concentration of phosphorous. However, this
process is often lengthy and costly.

FIG. 6 shows an ion implantation process for variable
doping on pyramidal three-dimensional TFSS 62. Shown,
pyramidal three-dimensional TFSS 62 has inverted pyrami-
dal cavity walls aligned along the (111) crystallographic
plane—thus 6 is about 54.7°. The relative angular orientation
of the implanted surface with respect to the incoming ion
beam makes it possible to obtain a desired, variable doping by
using an ion implantation process for doping the pyramidal
three-dimensional TFSS 62. The regions on the 3-D TFSS
which have surfaces perpendicular to the incident ion beam
are heavily doped, such as Region A, thus, creating a lower
sheet resistance junction. However, regions on the 3-D TFSS
which receive ions at an angle, such as the (111) inverted
pyramidal cavity wall surfaces, shown as Region B, are doped
effectively at a lighter dose, thus, creating a higher sheet
resistance junction. Since the (111) surface (or any oblique
orientation surface) is inclined at angle 6 (which is the angle
with respect to the flat horizontal surfaces—shown these flat
surfaces are aligned along the (100) crystallographic plane
making 6 about 54.7°), the dopant concentration is reduced to
cos 0 of the horizontal surface. After the deposition of a
passivating dielectric such as SiN:H, only the selectively
highly doped ledges of Region A on top of the 3D TFSS (or a
fraction of them) are then contacted by metal for emitter
contact metallization. This may be carried out by using one
the several techniques such: as an Ag paste that etches
through the passivating dielectric; by making openings using
laser ablation of the passivating dielectric: by removal using
etch paste, followed by plating-based and/or PVD metal
deposition. Thus, the ion implantation process for variable
doping to form selective emitters on the 3-D structure shown
facilitates one step selective doping and the formation of
dual-doped emitter junctions without a need for a more com-
plex process flow using lithography or screen printing pat-
terning.

FIG. 7 shows an angled ion implantation process on pyra-
midal three-dimensional TFSS 64. This ion implantation pro-
cess may be used to selectively dope the regions around the
tips/ledges of the three-dimensional surface features (shown
as Region A) of TFSS 64. The low doped emitter is first
uniformly formed using an implantation direction normal to
the plane of the TFSS 64 or by standard industrial techniques.
Next, angled ion implantation is used to selectively heavily
dope the tips of the structure (Region A in FIG. 7) which are
then selectively contacted by the metal.

The present disclosure also describes implantation of B
and P ions to produce suitable back surface field (BSF) in
thin-film planar and three dimensional solar cells in p-type or
n-type silicon, respectively.

The current industrial practice of making the back surface
field (BSF) using Al-paste firing and forming the Al—Si alloy
to provide the P+ layer has severe limitations. The p/p+ inter-
face is not sharp but is instead diffused—resulting in low
reflectivity for minority carrier electrons. The Si/Al—Si
interface is also diffused, resulting in low optical reflectivity
for long wavelength photons. Additionally, there are manu-
facturing problems such as the low conductivity of Al paste
and the wafer bow resulting from the intimate mixing of the
thick paste with silicon wafer. Using the implantation of B
ions for p-type substrates (and P for n-type) eliminates these
issues. As explained above for emitters, a sharp BSF of a
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desired profile may be easily obtained using the ion implan-
tation methods of the present disclosure.

To achieve uniform doping of the tip or ledges of the 3-D
TFSC, the wafer may be rotated during implantation so that
all sides or faces of the structure are uniformly doped.

Similar to the profile engineering disclosed above for the
emitter, any desired profile of BSF may be obtained. The
structure of 3-D TFSC may be used to obtain selective doping
for the BSF. The heavily doped tips are then selectively con-
tacted by a back metal, such as aluminum.

Similar to the case of emitter formation discussed in above,
an angled ion implantation of the 3-D TFSC may be also used
to obtain selective doping for the BSF. The heavily doped tips
are then selectively contacted by back metal.

After the formation of the emitter and BSF, either homo-
geneously or selectively doped, the implant anneal process
may be combined with oxidation to produce high quality
front and back passivation of cells.

Itis known that the passivation on N+ surfaces is enhanced
when the passivating dielectric has extra positive charge. The
SiN:H typically used in the solar industry has a surplus posi-
tive charge which, when controlled properly, can help provide
superior passivation of N+ surfaces. Similarly, the dielectric
layer passivating the back surface field may be implanted
with a negatively charged ion to further reduce the surface
recombination due to the field effect.

The ion implantation methods of the present disclosure
may also be used to obtain localized openings in the dielectric
layer for metal contacts. For this, the tips or ledges of the 3-D
TFSC are selectively implanted with an ion species, such as
nitrogen, that retards/slows the growth of oxide during a
subsequent thermal oxidation process. During oxidation the
passivating oxide grows everywhere except for these high, tip
regions which have been selectively implanted. The small
amount of SiN formation due the implantation of N is easily
removed in a cleaning sequence involving dilute HF followed
by phosphoric acid etch. These regions are then selectively
contacted by metal. On the front surface the selectively
opened regions can be selectively contacted with metal using
plating, ink-jet or other techniques. This facilitates the opti-
mization of front metal pattern to improve the cell perfor-
mance. On the back side these regions can be selectively
plated or contacted upon the blanket deposition of aluminum
using PVD or evaporation schemes. Such localized contact
scheme leads to the well know PERL type of cell structure
and with it well known performance benefits.

FIG. 8 illustrates a pyramidal three-dimensional thin-film
solar cell with selective frontside emitters. P-type (P+) base
70, an epitaxial silicon layer, has been doped according to an
ion implantation process to create N-type (N+) emitter layer
72 and p-type (P++) back surface field 74. Selective emitter
82 is formed through an angled ion implantation process. The
cell is then completed using standard passivation and metal-
lization techniques to form emitter metal contacts 78 (silver)
and base metal contacts 80 (aluminum). Anti-reflection coat-
ing 76 is an optical coating is an optical coating applied to the
surface of the TFSC to reduce reflection. FIGS. 12A-13D
depict a detailed process flow describing the formation of the
three-dimensional thin-film solar cell shown in FIG. 8.

FIG. 9 illustrates a pyramidal three-dimensional thin-film
solar cell with all backside contacts. N-type (N+) base 90, an
epitaxial silicon layer, has been doped according to an ion
implantation process to create N-type (N+) front side field 92
and p-type (P+) emitter layer 94. Selective emitter 104 and
selective base 102 are formed through angled ion implanta-
tion processes. The cell is then completed using standard
passivation and metallization techniques to form emitter



US 9,318,644 B2

9

metal 98 (which may be cobalt, copper, or nickel) and passi-
vation dielectric layer 100. Anti-reflection coating 96 is an
optical coating is an optical coating applied to the surface of
the TFSC to reduce reflection.

Selective emitter 104 is conveniently obtained during the
blanket implantation of emitter layer 94. The n-type wafer
with a pyramidal 3-D structure is implanted with boron to
form emitter layer 94—Ilower doped on the side walls but
highly doped on the flat surface. Front side field 92 is obtained
by blanket implantation of phosphorous. FIGS. 14A-15D
depict a detailed process flow describing the formation of the
three-dimensional thin-film solar cell shown in FIG. 9.

FIG. 10 illustrates a planar thin-film solar cell with all
backside contacts. N-type (N+) base 110, an epitaxial silicon
layer, has been doped according to an ion implantation pro-
cess to create N-type (N+) front side field 112 and p-type (P+)
emitter layer 114. Selective emitter 124 and base 122 are
formed through angled ion implantation processes and use
plated metals, such as nickel and copper, as contacts. The cell
is then completed using standard passivation and metalliza-
tion techniques to form base and emitter contact metals and
backside passivation dielectric layer 118. Anti-reflection
coating 116 and reflective insulator 120 help to increase the
light trapping capabilities of the planar TFSC.

The planar back contact TFSC in FIG. 10 may be made
from planar thin-film c-Si wafers. N-type material is advan-
tageous to when forming planar backside TFSC with methods
of'the present disclosure. P-type (P+) emitter layer 114 is first
made using a blanket implantation of the back surface of the
watfer with boron. Next, backside passivation dielectric layer
118 is grown or deposited. Base 122 is made by opening
contacts in this dielectric and then implanting with phospho-
rous. Selective emitter 124 is made next by passivating with a
dielectric layer and opening contacts and implanting with
boron. Front surface field 112 is then obtained using the
blanket implantation of phosphorous. FIGS. 16 A-16H depict
a detailed process flow describing the formation of the planar
thin-film solar cell shown in FIG. 10.

FIG. 11A is a process flow showing the formation of a
reusable template for forming a crystalline thin-film silicon
solar cell (such as that shown in FIGS. 8 and 9). FIG. 11B is
a corresponding illustrative depiction of the process steps in
FIG. 11A. FIG. 11A is an embodiment of a process flow
depicting major fabrication process steps for manufacturing
an inverted pyramidal silicon template and three-dimensional
thin-film silicon substrate for use in forming a thin-film sili-
con solar cell in accordance with the ion implantation meth-
ods of the present disclosure. In this embodiment, a template
for manufacturing inverted pyramidal solar cells is formed.

The silicon template making process starts with a mono-
crystalline (100) silicon wafer (142). The starting wafer may
be in circular or square shapes. Step 160 involves forming a
thin hard masking layer (144) on the exposed wafer surfaces.
The hard masking layer is used to mask the silicon surface
areas that do not need to be etched in the later steps—the
surface areas that will become the top surface of the template.
The proper hard masking layer includes, but is not limited to,
thermally grown silicon oxide and low-pressure vapor phase
deposited (LPCVD) silicon nitride. Steps 162 and 164
involve a photolithography step, which consists of photoresist
coating, baking, UV light exposure over a photomask, post
baking, photoresist developing, wafer cleaning and drying.
After this step, the pattern on the photomask (146) depicting
an array or a staggered pattern of inverted pyramidal base
openings, will be transferred to the photoresist layer. The
patterned photoresist layer is used as a soft masking layer for
the hard masking layer etching of step 166. Step 166 involves
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further transferring the photoresist pattern to the hard mask-
ing layer layered underneath by chemical etching, such as
etching a thin silicon oxide layer with buffered HF solution.
Other wet etching methods and dry etching methods as
known in semiconductor and MEMS wafer processing may
alsobeused. In step 168 the remaining soft masking layer, i.e.
the photoresist layer (150), is removed and the wafer (148) is
cleaned. Examples of photoresist removal process include
wet methods, such as using acetone or piranha solution (a
mixture of sulfuric acid and hydrogen peroxide), or dry meth-
ods such as oxygen plasma ashing. Also in step 168 the wafers
are batch loaded in an anisotropic silicon wet etchant such as
KOH solution. The typical etch temperature is in the range of
50° C. to 80° C. and etch rate is about 0.2 um/min to 1
um/min. TMAH (tetramethylammonium hydroxide) is an
alternative anisotropic silicon etching chemical. The KOH or
TMAH silicon etch rate depends upon the orientations to
crystalline silicon planes. The (111) family of crystallo-
graphic planes are etched at a very slow rate and are normally
“stop” planes for the anisotropic etching of a (100) silicon
wafer with patterned hard mask. As a result, the intersection
oftwo (111) planes ora (111) plane with a bottom (100) plane
produce anisotropic etching structures for (100) silicon
wafers after a time-controlled etch. Examples of these struc-
tures include V-grooves and pyramidal cavities with sharp tip
cavity bottom (where (111) planes meet) or a small flat cavity
bottom (a remaining (100) plane). In step 170, silicon tem-
plate 154 is ready for processing.

FIG. 12A is a process flow showing the formation of a
epitaxial silicon cell used for forming a crystalline thin-film
front contact silicon solar cell (such as that shown in FIG. 8).
FIG. 12B is a corresponding illustrative depiction of the pro-
cess steps in FIG. 12A.

In step 180 the remaining hard masking layer is removed,
by HF solution in the case the hard masking layer is silicon
dioxide. Next, the wafer may be cleaned in standard SC1
(mixture of NH,OH and H,0,) and SC2 (mixture of HCL and
H,0,) wafer wet cleaning solutions followed by a thorough
deionized wafer rinsing and hot N, drying. The disclosed
process results in a silicon template with inverted pyramidal
cavities.

Step 180 marks the beginning of a silicon template re-use
cycle. In step 182, a porous silicon layer (192) is formed by
electrochemical HF etching on the silicon template front sur-
faces. The porous silicon layer is to be used as a sacrificial
layer for epitaxial silicon layer release. The porous silicon
layer preferably consists of two thin layers with different
porosities. The first thin porous silicon layer is a top layer and
is formed first from the bulk silicon wafer. The first thin layer
preferably has a lower porosity of 10%~35%. The second thin
porous silicon layer is directly grown from the bulk silicon
and is underneath the first thin layer of porous silicon. The 2"¢
thin porous silicon layer preferably has a higher porosity in
the range of 40%~80%. The top porous silicon layer is used as
a crystalline seed layer for high quality epitaxial silicon
growth and the bottom underneath higher porosity porous
silicon layer is used for facilitating TFSS release due to its less
dense physical connections between the epitaxial and bulk
silicon interfaces and its weak mechanical strength. Alterna-
tively, a single porous silicon layer with a progressively
increased or graded porosity from top to bottom may also be
used. In this case, the top portion of the porous silicon layer
has a low porosity of 10% to 35% and the lower portion of the
porous silicon layer has a high porosity of 40% to 80%.
Before step 184, the epitaxial silicon growth, the wafer may
be baked in a high temperature (at 950° C. to 1150° C.)
hydrogen environment within the epitaxial silicon deposition
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reactor in order to form coalesced structures with relatively
large voids within the higher-porosity porous silicon layer (or
portion of a single layer) while forming a continuous surface
seed layer of crystalline silicon on the lower-porosity porous
silicon layer (or portion of a single layer). In step 184, a
mono-crystalline silicon epitaxial layer with n-type base
(194) is deposited on the front side only. The bulk base of the
epitaxial layer is p-type, boron (B,H) doped. The thickness
of the epitaxial layer is preferably in the range of 5 um to 60
um. Prior to the release of the epitaxial silicon layer, an
encompassing border trench may be made on the peripheral
of the active wafer area to facilitate the release of the TFSS.
The encompassing trenches may be formed by controlled
laser cutting and their depths are preferably in the range of 5
um to 100 um. The trenches define the boundary of the 3-D
TFSS to be released and allow initiation of the release from
the trenched region. The remaining epitaxial silicon layer
may be removed by mechanical grinding or polishing of the
template edges. In step 186, the epitaxial layer of silicon (200)
is released and separated from the silicon template. The
released epitaxial silicon layer is referred to as a 3-D thin film
silicon substrate (3-D TFSS). The epitaxial layer release
methods disclosed in U.S. patent application Ser. No. 12/473,
811 entitled, SUBSTRATE RELEASE METHODS AND
APPARATUS are hereby incorporated by reference. The 3-D
TFSS may be released in an ultrasonic DI-water bath. Or in
another release method, the 3-D TFSS may be released by
direct pulling with wafer backside and top epitaxial vacuum
chucked. In another release method, the epitaxial layer is
released by direct pulling with wafer backside and top epi-
taxial vacuum chucked. Using this method the porous silicon
layer may be fully or partially fractured. The chucks may use
either electrostatic or vacuum chucking to secure the wafer.
The wafer is first placed on bottom wafer chuck with TFSS
substrate facing upwards. A bottom chuck secures the tem-
plate side of wafer, and the top wafer chuck is gently lowered
and secures TFSS substrate side of the wafer. The activated
pulling mechanism lifts top chuck upwards, and the move-
ment may be guided evenly by slider rails.

In step 188, the released 3-D TFSS backside surface is
cleaned by short silicon etching using KOH or TMAH solu-
tions to remove the silicon debris and fully or partially remove
the quasi-mono-crystalline silicon (QMS) layer. After
removal of the epitaxial silicon layer from the template, the
template is cleaned in step 175 by using diluted HF and
diluted wet silicon etch solution, such as TMAH and/or KOH
to remove the remaining porous silicon layers and silicon
particles. Then the template is further cleaned by conven-
tional silicon wafer cleaning methods, such as SC1 and SC2
wet cleaning to removal possible organic and metallic con-
taminations. Finally, after proper rinsing with DI water and
N, drying, the template is ready for another re-use cycle.

FIG.13A is a process flow showing the formation of a front
contact crystalline thin-film silicon solar cell (such as that
shown in FIG. 8). FIG. 13B is a corresponding illustrative
depiction of the process steps in FIG. 13A.

FIG. 13C is a continuation of the process flow in FIG. 13A
showing the formation of a front contact crystalline thin-film
silicon solar cell (such as that shown in FIG. 8). FIG. 13D is
a corresponding illustrative depiction of the process steps in
FIG. 13C.

FIG. 14A is a process flow showing the formation of a
epitaxial silicon cell used for forming a back contact crystal-
line thin-film silicon solar cell (such as that shown in FIG. 9).
FIG. 14B is a corresponding illustrative depiction of the pro-
cess steps in FIG. 14A.
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FIG. 14C is a continuation of the process flow in FIG. 14A
showing the formation of a epitaxial silicon cell used for
forming a back contact crystalline thin-film silicon solar cell
(such as that shown in FIG. 9). FIG. 14D is a corresponding
illustrative depiction of the process steps in FIG. 14C.

FIG. 15A is a process flow showing the formation of a back
contact crystalline thin-film silicon solar cell (such as that
shown in FIG. 9). FIG. 15B is a corresponding illustrative
depiction of the process steps in FIG. 15A.

FIG. 15C is a continuation of the process flow in FIG. 15A
showing the formation of a back contact crystalline thin-film
silicon solar cell (such as that shown in FIG. 9). FIG. 15D is
a corresponding illustrative depiction of the process steps in
FIG. 15C.

FIG. 16A is a process flow showing the formation of a
planar back contact crystalline thin-film silicon solar cell
(such as that shown in FIG. 10). FIG. 16B is a corresponding
illustrative depiction of the process steps in FIG. 16A.

FIG. 16C is a continuation of the process flow in FIG. 16 A
showing the formation of a planar back contact crystalline
thin-film silicon solar cell (such as that shown in FIG. 10).
FIG. 16D is a corresponding illustrative depiction of the
process steps in FIG. 16C.

FIG. 16E is a continuation of the process flow in FIG. 16 A
showing the formation of a planar back contact crystalline
thin-film silicon solar cell (such as that shown in FIG. 10).
FIG. 16F is a corresponding illustrative depiction of the pro-
cess steps in FIG. 16E.

FIG. 16G is a continuation of the process flow in FIG. 16 A
showing the formation of a planar back contact crystalline
thin-film silicon solar cell (such as that shown in FIG. 10).
FIG. 16H is a corresponding illustrative depiction of the
process steps in FIG. 16G.

In operation, the disclosed subject matter provides ion
implantation methods for forming emitter regions, selective
emitter regions, front surface fields, back surface fields, and
base regions for the formation of crystalline thin-film silicon
solar cells.

The following disclosure more directly relates to the
present application and further discloses a unique structure
and manufacturing method for all a back-contact, back-junc-
tion crystalline (preferably monocrystalline) semiconductor
(including but not limited to silicon) solar cells using laser
annealing along with ion implantation. Importantly, the
ranges disclosed are for exemplary purposes only. Together,
the use of laser and ion implantation technologies provides
for a simpler cell fabrication process flow that enables low-
temperature passivation layer formation, minimizes electrical
shading, and results in a high open circuit voltage (Voc), short
circuit current (Jsc), thus leading to a higher solar cell effi-
ciency. Herein, the formation of localized, isolated base
regions for p/n junction and front surface field (FSF) to
improve minority carrier lifetime, using ion implantation fol-
lowed by laser annealing, is disclosed. These techniques are
highly suited to forming high-efficiency back-contact back-
junction solar cells using thin crystalline silicon films
obtained using epitaxial silicon deposition, or other tech-
niques known in the industry, that may have any thickness in
the silicon thickness range of from a few microns up to 100
microns (and more preferably in the range of about 5 microns
to 50 microns). Furthermore, these techniques are particu-
larly suited to solar cells that for various reasons, including
but not limited to the thin cell lamination with a reinforcement
plate, cannot be heated to high temperatures during part of
their fabrication process, particularly during the formation of
a surface passivation and anti-reflection coating layer.



US 9,318,644 B2

13

Processes for back contacted cells with interdigitated met-
allization, herein called a NBLAC cell, have been described
in PCT applications such as P.C.T. App. Nos. PCT/US10/
59783, PCT/US10/59759, and PCT/US10/59748 by inven-
tors Mehrdad Moslehi, et al. and filed Dec. 9, 2010.

FIG. 17 is a process flow for commercially manufacturing
an all back contact back-junction solar cell using planar thin
films (e.g., monocrystalline silicon film thickness of from a
few microns to about 100 microns) of crystalline silicon
epitaxially deposited on reusable crystalline silicon tem-
plates. After cell formation, the thin silicon films are sup-
ported on backplanes that connect the solar cell to intercon-
nects in the module.

FIG. 18 is a cross section of a back contact/back junction
solar cell structure such as that formed by the process
described in FIG. 17, where the backplane is not shown for
clarity. As can be seen, the all back-contact back-junction
solar cells have the alternating emitter and base regions on the
same side (non-sunnyside or backside) in the silicon substrate
that are contacted separately to interdigitated metal lines
using contact openings in the dielectric overlying the silicon
substrate and underneath the metal. The efficiency of these
cells is critically dependent on the dimensions of the base
regions with smaller dimensions leading to higher efficiency.
In traditional all back-contact/back-junction solar cells, the n
and p regions form alternate stripes. The minority charge
carriers, holes in case of n-type base, have to traverse across
the base region where there can be heavy recombination, as
shown in FIG. 18, where h. denotes holes, the minority charge
carriers. This phenomenon is termed electrical shading.
Hence, reducing the width of the base region reduces the
electrical shading, which reduces the recombination of these
minority charge carriers and increases the solar cell effi-
ciency. If areas of the base regions could be reduced to the
bare minimum needed, the electrical shading will be reduced
to the bare minimum and efficiency of the solar cell will be
maximized. The use of pulsed laser ablation enables forma-
tion of small features, thereby forming the base stripes of very
small width. The laser ablation technique can be further
extended to form isolated islands of base regions that reduce
the electrical shading to a minimum. The application of laser
processing in solar cell manufacturing has been disclosed, in
U.S. Patent Pub. No. 2012/0028399 by Virendra V. Rana and
filed May 27, 2011 for example, which is herein incorporated
by reference in its entirety.

Ion implantation process involves implantation of ions of
dopant element in the silicon substrates. lons of phosphorous
(P), arsenic (As), and antimony (Sb), are implanted to form
n-type silicon regions, while boron (B), aluminum (Al), Gal-
lium (Ga), and Indium (In), are used to form p-type silicon
regions. The most commonly used ions are P and As for
n-type, and B for p-type doping of silicon. Advantages of
using ion implantation are the ability to control the concen-
tration and the depth of implanted ions by controlling the ion
implantation dose and energy. Also, the implanted ions may
be placed in silicon in any desired concentration profile (for
instance, by a combination of multiple implants at different
dose and energy levels). This technique is a non-contact, dry
technique. Since the ion implantation is performed essen-
tially at room temperature, this technique is suitable for solar
cells that, for various reasons, cannot be heated to high tem-
peratures after the ion implantation process step.

For implanted ions to produce the desired doping of crys-
talline silicon, they need to be activated. Although, the typical
technique used in the industry is furnace heating or rapid
thermal heating, these techniques are not suitable for cases
where the solar cell or the assembly cannot be heated to a high
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temperature (for instance to a temperature much above 200[]
C.) after the ion implantation process. On the other hand,
pulsed laser annealing may be highly localized (spatially
selective on the laser-irradiated surface) and the irradiated
surface may be heated to a relatively high temperature (suf-
ficiently high to electrically activate the implanted dopant
atoms, for instance, the irradiated surface temperature selec-
tively raised to a temperature in the range of 750° C. to up to
near silicon melt temperature) while keeping the cell back
surface relatively cooler (for instance, limiting the back-sur-
face temperature to no more than 200° C.). In addition, pulsed
laser annealing using fast pulses, because of its extremely
rapid heating and cooling rates and negligible heat diffusion
into the substrate away from the irradiated surface, is ideally
suited to producing the sharp dopant gradients where the
dopant atoms are not moved (and the bulk substrate below the
irradiated surface is not significantly heated) while being
electrically activated. The application of laser annealing to
improve passivation of surface coated with SiN, a-SI/SiN, or
other suitable dielectrics, have been disclosed (see U.S.
patent application Ser. No. 13/303,488 by Mehrdad Moslehi
and filed Nov. 23, 2011 and U.S. patent application Ser. No.
13/477,088 by Virendra V. Rana and filed May 21, 2012 both
of which are herein incorporated by reference in their
entirety).

For fragile thin crystalline silicon films, suitable thin-sub-
strate support and non-contact substrate processing tech-
niques may be preferred in order to maintain high manufac-
turing yield. Both ion implantation and pulsed laser annealing
satisfy this requirement. Also, because of considerable recent
developments, these techniques now provide high throughput
and may be tailored to larger cell sizes of any geometrical
shape.

FIG. 19 is amodified process flow for the formation of base
regions that utilizes ion implantation followed by laser
annealing. Here, we describe the formation of isolated islands
of base regions using the process shown in FIG. 19. The
various process steps of FIG. 19 are shown by the solar cell
structure depicted in FIGS. 20 to 24. FIG. 20 is a diagram of
a solar cell after base isolation areas have been opened by
laser. FIG. 21 is a diagram of a solar cell after base contacts
have been opened by laser. FIG. 22 is a diagram of a solar cell
after base contacts have been implanted with phosphorous
and laser annealed. FIG. 23 is a diagram of a solar cell after
emitter contacts have been opened by laser. FIG. 24 is a
diagram of a solar cell after an interdigitated metal pattern is
connected to the emitter and base.

After the deposition of Boron doped oxide (BSG), prefer-
ably by an atmospheric-pressure chemical-vapor deposition
(APCVD) system, openings of dimension ‘a’ are preferably
made in this oxide layer using a pulsed picoseconds or a
femtoseconds laser (FIG. 20) that are large enough for the
base contacts of size ‘b’, as well as the required isolation from
emitter, ‘a’ minus ‘b’ (FIG. 21). The use of a pulsed picosec-
ond or femtosecond laser significantly reduces the risk of
damage to silicon by eliminating the Heat-Affected Zone
(HAZ) and preventing/suppressing melting of underlying
silicon. Next, a high temperature oxidation (or high-tempera-
ture anneal) is carried out at a temperature of preferably in the
range 0of 950° C. to 1100° C. to dope the n-type silicon surface
with boron to form emitter all over the wafer surface except in
regions where the boron-doped oxide had been removed with
pulsed laser ablation. This oxidation (or oxidizing anneal)
also forms a thin layer (from a few nanometers to 10’s of
nanometers) of thermal oxide in the laser openings as well as
at the interface of the born-doped oxide layer with silicon
substrate. Next, a thin layer of undoped oxide (USG) is depos-
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ited (again, preferably using an APCVD process) and opening
for base contacts are made in the stack formed by this layer
and the thermal oxide underneath, using a pulsed picoseconds
or a femtoseconds laser. These openings of dimension ‘b’ are
inside the openings ‘a’ made earlier and aligned center-to-
center. For example, the base contact diameter may range
from 10 to over 100 pum, a preferred range being 20 to 50 pm.
For example, the width of the isolation zone is 15 um or more
based on the laser beam alignment capability. For example,
the percent of base opening (base contact area ratio) may be in
the range from about 0.5% to over 10%, a preferred range
being about 1 to 3%.

Next, a blanket ion implantation of phosphorous (P) is
carried out (FIG. 22). The base contacts are selectively
implanted with P since the thermal oxide/deposited oxide
stacks act as a mask to prevent the implantation of emitter
regions. The concentration (dose) and depth of P implants are
suitable to obtain the desired doping for base contacts as well
as the gradient required for back-surface field (BSF). The
surface concentration of dopants may be from 1x10' to
1x10** cm3, a preferred range being from 5x10*° to 1x10°
cm3. The depth of implanted dopants may be from 0.1 to 5
um, a preferred range being from 0.3 to 0.5 um.

These implants are electrically activated using pulsed laser
anneal (FIG. 22). Pulsed laser with nanoseconds pulsewidth
and wavelength in the blue, green or infrared (IR) are suitable
for this operation. The pulsewidth is in the range of approxi-
mately a few nanoseconds to a few microseconds, and pref-
erably in the range of approximately 100 to 1,000 nanosec-
onds. However, in case of thicker silicon films it may be
possible to use microseconds pulsewidth lasers.

After the doping and activation of the base contacts is
complete, the contacts to emitter are opened using a pulsed
picoseconds or a femtoseconds laser (FIG. 23). Next, the
metal layer (preferably a metal stack layer comprising an
aluminum layer in contact with the cell and at least another
layer on top of aluminum comprising a metal from the group
of NiV, Ni, or Ag) is deposited, typically using physical vapor
deposition (PVD) to make contacts to the base and emitter
openings and patterned using a pulsed picoseconds laser (or a
combination of pulsed nanoseconds and pulsed picoseconds
lasers) to isolate p and n contacts thereby forming the photo-
voltaic circuit (FIG. 24). The rest of process may be as
described in FIG. 19.

Alternatively, instead of PVD metal stack, an aluminum
containing paste can be screen printed and annealed to form
the interdigitated metal pattern while also making connection
to the emitter and base contacts. The rest of the process may
be as described in FIG. 19.

The use of ion implantation also provides a simple method
to obtain the so-called “selective emitter” feature. In the
selective emitter scheme, the doping concentration of emitter
is kept low everywhere to reduce the absorption while under
the metal contact the emitter is highly doped to reduce the
contact resistance, and hence improve the solar cell effi-
ciency. FIG. 25 is a process flow embodiment for forming a
selective emitter. In this scheme before the base isolation
region is opened, the BSG layer is removed using laser and
the silicon so exposed is implanted with a high concentration
of' boron. The oxide film elsewhere blocks the boron implant
from reaching the silicon. The surface concentration of boron
dopants may be from 1x10'® to 1x10*! cm3, a preferred range
being from 5x10' to 1x10*° cm3. The depth of implanted
dopants may be from 0.1 to 5 um, a preferred range being
from 0.3 to 0.5 um. The silicon surface is furnace annealed or
annealed using a laser. FIG. 26 shows a cell pattern with
discrete islands of base and emitter contacts with selective
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emitter, FIG. 27 shows a cell pattern where the base isolation
and selective emitter openings made using laser ablation may
be continuous.

For back contact/back-junction cells the minority charge
carriers that are generated near the top surface of the silicon
have to travel all the way down to the contacts at the back
surface. Since most of the photo-generated charge carriers
(electron-hole pairs) are closer to the front surface there is a
greater chance for them to recombine at this surface. Hence,
the passivation of the front surface (or the cell sunny side) has
to be excellent to obtain high cell efficiency. The passivation
of the front surface is characterized by the front surface
recombination velocity (FSRV), with lower FSRV values
(typically stated in units of cm/sec) representing better sur-
face passivation. The FSRV is typically reduced to a very low
value using PECVD SiN deposition followed by annealing to
a relatively high temperature (e.g., up to 300° C. to 850° C.),
or PECVD amorphous silicon deposition (typically deposited
at a temperature of less than 200° C.). However, both these
processes have limitations. Good surface passivation requires
annealing to temperatures as high as 8500° C., while passi-
vation with amorphous silicon requires good quality surface
cleaning and optimized PECVD amorphous-silicon deposi-
tion at temperatures of around 180° C. or above, as well as
possibly post-deposition annealing at temperatures in the
range of 180° C. to as high as 450° C. Both of these processes
may not be suitable for solar cell assemblies that cannot be
heated to 200° C. or above, during or after their front surface
passivation process (for instance, for thin-film monocrystal-
line solar cells with reinforcement plates or layers which
cannot stand thermal treatments much above approximately
200° C.).

An alternate scheme to lower the minority charge carrier
recombination is to form a ‘high-low’ electrical field at the
front surface. This field electrically repels the oppositely
charged carriers so that they are not able to reach the front
surface and recombine there. To repel holes, for n-type sub-
strate or n-type base (such as in an n-type base back-contact/
back-junction solar cell), this field is created by a zone of
heavier doping of phosphorous (or another n-type dopant
such as arsenic or antimony) to create an n+ doped surface.
This high-low field at the front surface is called the front
surface field (FSF). The results of a simulation based on PCID
are shown in the graphs in FIG. 28, where increasing the
concentration of front surface doping by P increases both the
Voc and Jsc, and thereby increases the solar cell efficiency. It
may be seen that an FSF as thin as 100 A (or 10 nm) or even
a thinner FSF layer in the top surface of the semiconductor
layer can lead to increases in both open-circuit voltage (Voc)
and short circuit current density (Jsc), almost as much as a
much thicker FSF layer. The thickness of FSF needs to be low,
because as seen in FI1G. 25, for FSF thickness of 0.5 um, both
Voc and Jsc are observed to decrease at high doping concen-
tration related to the blue response degradation by the thicker
and more heavily doped FSF layer. For a back-junction/back-
contact thin-film monocrystalline silicon solar cell with
n-type base, using ion implantation of phosphorus (or arsenic
or antimony or indium) followed by pulsed (pulse width
preferably in the range of about 100 nanoseconds to a few
microseconds) laser annealing (with the laser wavelength
preferably in the blue, green, red, or near infrared region of
the spectrum), the formation of FSF can be carried out by
raising the effective surface temperature to a sufficiently high
temperature (e.g., in the range of about 750° C. up to below
the silicon melting point) where the temperature rise of the
bulk and the backside of the semiconductor layer is substan-
tially suppressed and the assembly components on the back-
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side (such as the reinforcement or backplane layer on the cell
backside), in-particular, are not exposed to temperatures
close to approximately the temperature limit of the backside
reinforcement plate (for instance, 200° C. or higher).

The FSF layer may be performed by using an ion implan-
tation process either before or after formation of the front
surface passivation layer (preferably by a PECVD process
step), followed by a pulsed laser annealing after formation of
the front surface passivation layer.

The formation of FSF on the front surface of silicon sub-
strate using ion implantation of phosphorus (P) or another-n-
type dopant (for a solar cell with n-type base), followed by
pulsed laser anneal, is shown schematically in FIG. 29. FIG.
29A is a cross section of a solar cell with a textured frontside
surface. FIG. 29B is a cross section of a solar cell after ion
implantation of an n-type dopant such as phosphorous. FIG.
29C is a cross section of a solar cell after laser anneal to
activate the implanted phosphorous (for n-type base).

The formation of electrically active FSF layeris carried out
after surface texture, and preferably after deposition of the
passivation and anti-reflection coating (ARC) layer(s) on the
front surface of the silicon substrate (for instance, by PECVD
formation of a single-layer or multi-layer passivation/ARC
coating comprising a hydrogen-containing silicon nitride
and/or a hydrogen-containing amorphous silicon layer). At
this stage, the thin-film monocrystalline silicon substrate is
supported by a backplane (either a permanently attached/
laminated backplane or a temporary support carrier) that may
not be heated to high temperatures due to backplane material
temperature limits and/or coefficient of thermal expansion
(CTE) mismatch with silicon (typically, these constraints
may place an upper temperature limit in the range of approxi-
mately 150° C. to 300° C., and more likely below 250° C.).

The combination of ion implantation and pulsed laser
anneal for formation of FSF field as disclosed herein has
several major enabling advantages. Besides keeping the back
surface of the solar cell assembly below the temperature limit
of the solar cell backplane laminate (for instance below
approximately 200° C.), an ion implantation process is a
conformal process placing the implanted dopant species (e.g.,
phosphorus) at a uniformly constant depth conformal to the
surface texture random pyramids, resulting in formation of
dopant profile in silicon that is conformal to the textured solar
cell surface. The ion implantation process can be performed
either before or preferably after the formation of the front
surface passivation/ARC coating using a relatively low-en-
ergy ion implantation process. If the ion implantation process
is performed after the formation of the front surface passiva-
tion/ARC coating, the ion implantation energy is selected to
place the peak concentration of the implanted profile approxi-
mately either at the interface between the silicon substrate and
the passivation/ARC coating or within the passivation/ARC
coating layer. The dose of the ion implantation process may
be adjusted such that the resulting peak implanted dopant
concentration is preferably in the range of about 5x10'° to
1x10'° ¢m-3. The front surface passivation may be SiN
(composed of a single or at least two different refractive
indices) or amorphous silicon/SiN stack, or oxide/SIN stack,
or other layers and stacks such as silicon oxynitride, with or
without an oxide underlayer, and silicon carbide, etc. The ion
implantation process is tuned to provide dopant implantation,
such as phosphorus (P) implantation for n-type base, such that
the concentration peak is preferably at or near the silicon
substrate/passivation layer interface. The surface concentra-
tion of dopant, P for n-type base, may be from 1E16 to 1E20
cm-3, while the preferred range is SE16 to 1E19 cm-3. The
dopant atoms may be implanted and laser annealed to form an
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FSF layer to a depth below silicon surface that may range
from about 10 A to about 1 micron, while FSF layers in the
thickness range of about 50 A to about 0.1 um are preferred to
prevent blue response degradation.

Because of extremely rapid heating and cooling times and
limited heat diffusion depth, pulsed laser annealing can elec-
trically activate the implanted dopant atoms without an appre-
ciable movement. As a preferred process, pulsed laser anneal-
ing is performed under conditions which prevent excessive
heating and melting of silicon in order to prevent damage to
silicon and degradation of the passivation properties. This
makes possible the formation of relatively sharp step function
profiles of dopant atoms that help to amplify the repulsion
field, and FSF field-assisted improvement of the front surface
passivation properties. A nanoseconds (to microseconds)
pulsed laser with wavelength in the blue or green or red or
infrared (IR) is suitable for spatially selective annealing. The
preferred pulsewidth is in the range of approximately 100 to
1,000 nanoseconds. However, in case of thicker silicon films
it may be possible to use microseconds pulsewidth lasers.
Other pulsed laser sources with pulse width between about 1
nanosecond to 100 nanoseconds or up to several microsec-
onds may also be used.

A process flow to form a solar cell with an FSF layer based
is shown in FIG. 30. FIG. 31 shows a combined process flow
where a high efficiency solar cell is made with ion implanted
and annealed base contacts in the rear with an FSF in the front
based on the embodiments of this disclosure. FIG. 32 shows
a process flow where the selective emitter formation is also
included. FIG. 33 is a diagram of a cross section of the solar
cell formed in accordance with the disclosed subject matter
(the backplane is not shown for clarity).

Although the process flow and techniques are described for
a cell based on n-type base, the same considerations apply to
acell based on p-type base where the base doping and the FSF
formation is done using implantation of boron (or another
suitable p-type dopant such as gallium or aluminum).

Although, for simplicity the process has been described for
a planar silicon film, the same holds true for 3-D silicon
substrates formed using pre-structured templates with vari-
ous pyramidal or prism 3D patterns.

Two additional methods for laser anneal are further
described below, whereby, the sunny side of the solar cell is
annealed without necessarily affecting the back or the non-
sunny side of the solar cell.

Conventional back contacted solar cells are n-type sub-
strate and use PECVD based SiN based passivation for the
sunny side. This passivation also serves as an anti reflection
coating and has a positive fixed charge which helps create a
field effect by reflecting the minority carriers (holes in this
case) away from the surface. The typical good quality passi-
vation deposition temperature for the PECVD SIN is about
400° C. In certain cases, the maximum tolerable temperature
can be much less than 400° C., as dictated by the integration
scheme. For example, in the case of very thin film crystalline
silicon solar cells, which are supported by carriers which are
not capable of going higher than a maximum temperature less
than 400° C.

In a particular instance, this temperature can be as low as
200° C. With the constraint 0 200° C. maximum temperature,
the issue is to get a passivation quality as good as a 400° C.
typical passivation. A possible solution is to deposit very thin
amorphous silicon (can be between 30 A to 100 A) range such
that it is non-absorptive. The idea is that amorphous silicon
contains significant hydrogen, which can passivate the dan-
gling bonds, thereby improving the passivation quality. How-
ever, the problem is thatat 200° C. temperature, the Hydrogen



US 9,318,644 B2

19

atoms may not have enough mobility to migrate from amor-
phous silicon to the silicon interface.

To aid the mobility of the Hydrogen atoms, laser anneal is
deployed, which in its pulsed form lasts for a very short
duration. This should be enough to cause the migration of H2
atoms for short distance, without disturbing the integrity of
the other parts of the structure. The laser process must be such
that the front surface is selectively heated, while ensuring that
back surface, which may consist of temperature sensitive
metal structures, is not affected.

In one embodiment this can be achieved using short wave-
length laser, which is absorbed near the sunny side surface of
the solar cell. Short wavelength laser (such as green) will be
absorbed readily within a distance of 1 um or less, thus
minimizing the chance of hitting the temperature sensitive
back structure of a back contacted cell.

In another embodiment, longer wavelengths such as 1 um
range may be used. A longer wavelength will travel longer
distance into silicon and may reach the backside without
getting absorbed in the bulk. Thus, a process must be
designed such that front, sunny side, is heated, while the laser
is stopped from hitting the backside. This can be achieved,
either by absorbing the laser power in the silicon or by reflect-
ing is before it reaches the backside. The absorption can be
done in the bulk after the laser has already passed through the
critical front side. This can be achieved using the aforemen-
tioned technique of flooding the bulk with carrier excited by
potentially a different wavelength laser in a CW mode and
relying on plasma dispersion effect to get it absorbed.
Amongst several ways of reflecting the annealing laser, two
specific embodiments are described below.

In one instance, the fact that annealing laser is monochro-
matic is exploited. A mirror is created on the backside using
different refractive index. The thicknesses are tuned in accor-
dance with the refractive index such that laser at 1 um (or the
relevant wavelength in use) is selectively reflective by the
dielectric mirror stack. In one example, the dielectric mirror
stack can be made using SiO2 and SIN. The SiO2 can either
by deposited using myriad techniques such as thermal oxida-
tion or APCVD. While, SiN can be deposited using PECVD.
In many instances, at least a part of the dielectric stack might
already be part of the back surface passivation. Since the
metal is behind the dielectric mirror, thus formed, the laser is
reflected back toward the front surface before it touches the
back metal.

In another instance of reflecting the annealing long wave-
length laser, the angle of incidence of the laser may be varied
in conjunction with the topography of the front typically
textured surface. In most back contacted solar cells, the fron-
tside consists of a passivation on top of'silicon. Thus, the light
enters typically from a high refractive index to a lower refrac-
tive index. Thus, the angle of incidence of the annealing laser
can be varied in a manner such that when light falls on the
back Silicon/dielectric (typically SiO2) interface, its angle of
incidence at this surface is greater than the critical angle for
total internal reflection (henceforth, TIR). Thus, TIR causes
the laser beam to be reflected back toward the front side well
before it has a chance to touch the backside metal stack.

In operation, the following processes and process embodi-
ments are herein provided: a process to form isolated islands
of base and/or front surface field (FSF), using ion implanta-
tion followed by pulsed laser annealing are disclosed for all
back-contact back-junction solar cells using thin-film crys-
talline silicon substrates; processes to form isolated islands of
base and front surface field (FSF), using ion implantation
followed by pulsed laser annealing are disclosed for all back-
contact back-junction solar cells using thin-film crystalline
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silicon substrates with assemblies such as cell reinforcement
plates or backplane laminates that cannot be heated to a
temperature above approximately a maximum temperature in
the range of 150° C. to 3500° C.

In another embodiment, processes to form isolated islands
of base and front surface field, using ion implantation fol-
lowed by pulsed laser annealing for 3-D back-contact back-
junction solar cells using thin-film crystalline silicon sub-
strates; a process to form the selective emitter is disclosed
using ion implantion followed by furnace or laser anneal. In
the selelctive emitter region the surface concentration of
boron dopants may be from 1x1019 to 1x1021 cm3, a pre-
ferred range being from 5x1019 to 1x1020 cm3. The depth of
implanted dopants may be from 0.1 to 5 um, a preferred range
being from 0.3 to 0.5 um; processes to form front surface field
(FSF), using ion implantation followed by pulsed laser
annealing are disclosed for all back-contact back-junction
solar cells using thin-film crystalline silicon substrates where
the peak concentration of implants is in the range of 1E16 to
1E20 cm-3, the preferred range being SE16 to SE18 cm-3.

In another embodiment, processes to form front surface
field (FSF), using ion implantation followed by laser anneal-
ing are disclosed for all back-contact back-junction solar cells
using thin-film crystalline silicon substrates where the depth
of the resulting FSF layer formed by a combination of ion
implantation and pulsed laser anneal is in the range of
approximately 10 A to 0.5 um, the preferred range being
about 50 to 1000 A.

In another embodiment, the FSF formation is carried out
for textured thin film silicon substrates that may be passivated
with be SiN or amorphous silicon/SiN stack, or oxide/SIN
stack, or other layers and stack such as silicon oxynitride,
with or without an oxide underlayer, and silicon carbide, etc,
deposited at temperatures lower than 200° C.

In another embodiment, processes to form front surface
field (FSF), using ion implantation followed by pulsed laser
annealing are disclosed for all back-contact back-junction
solar cells using thin-film crystalline silicon substrates where
the concentration peak for the dopant is approximately at the
silicon/passivation layer interface.

In another embodiment, processes to form front surface
field (FSF), using ion implantation followed by laser anneal-
ing are disclosed for all back-contact back-junction solar cells
using thin-film crystalline silicon substrates are disclosed
where pulsed laser annealing is carried out using pulses with
pulse width in the range of nanoseconds to microseconds,
preferably a nanoseconds laser with blue or green or red or IR
wavelength, the preferred pulse width being in the range of
approximately 100 to 1000 nanoseconds.

In another embodiment, processes to form isolated islands
of base for all back-contact back-junction solar cells using
thin-film crystalline silicon substrates are disclosed where the
isolated base contact islands are formed using aligned laser
ablation using picoseconds or femtoseconds pulsed laser with
UV, green, or IR wavelengths. The base contact diameter can
range from 10 to 100 pum, preferred range being 20 to 50 um.
The width of the isolation zone is preferably >15 pm based on
the laser beam alignment capability. The percent of base
opening can be in the range from about 0.5% to 10%, the
preferred range being 1% to 3%.

In another embodiment, processes to form isolated islands
of base for all back-contact back-junction solar cells using
thin-film crystalline silicon substrates are disclosed where the
base doping is carried out by ion implantation and followed
by pulsed laser anneal. The surface concentration of dopants
can be from 1E19 to 1E21 cm-3, preferred range being from
SE19 to 1E20 cm-3. The depth of implanted and annealed
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dopant can be approximately from 0.1 to 5 um, preferred
range being from about 0.3 to 0.5 um

In another embodiment, processes to anneal the wafer
using a laser are disclosed where the laser beam is prevented
from heating the backplane as it is reflected from the SiO2/
SiN bilayer at the back of the silicon film.

In another embodiment, process to anneal the wafer using
laser are disclosed where the laser beam is prevented from
heating the back plane as it undergoes full internal reflection
because of the angle at which it is made to be incident on the
back plane. This may be performed by controlling the inci-
dent angle of the laser beam depending on the dielectric stack
on the front surface of the wafer.

The foregoing description of the exemplary embodiments
is provided to enable any person skilled in the art to make or
use the subject matter. Various modifications to these embodi-
ments will be readily apparent to those skilled in the art, and
the generic principles defined herein may be applied to other
embodiments without the use of the innovative faculty. Thus,
the subject matter to be claimed in subsequently filed appli-
cations is not intended to be limited to the embodiments
shown herein but s to be accorded the widest scope consistent
with the principles and novel features disclosed herein.

What is claimed is:

1. A method for making base regions in a thin-film crys-
talline silicon substrate, the method comprising:

forming openings in a dielectric layer for base contacts on

a thin-film crystalline silicon substrate, wherein said
openings form a patterned dielectric layer;

implanting ions of an dopant element in said thin-film

crystalline silicon substrate within said patterned dielec-
tric layer to selectively introduce said dopant element at
said base contacts, said patterned dielectric used as an
ion implantation mask;

activating said implanted dopant element to form electri-

cally active doped base contacts;

forming emitter contacts on said thin-film crystalline sili-

con substrate; and

forming metallization contacts on said emitter contacts and

said base contacts.

2. The method of claim 1 wherein said dopant element
comprises at least one element from the group of phosphorus,
arsenic, antimony, and indium in conjunction with an
n-doped epitaxial silicon substrate.

3. The method of claim 1, further comprising the step of
forming a crystalline thin-film silicon substrate, the steps
comprising:

forming a porous sacrificial layer on and substantially con-

formal to the surface of a silicon template;
subsequently depositing an epitaxial silicon layer on said
sacrificial layer;

performing a plurality of solar cell processing steps includ-

ing said ion implantation process; and

releasing said epitaxial silicon layer from said silicon tem-

plate through a mechanical release or epitaxial lift off
process.

4. The method of claim 1, wherein said silicon substrate is
an n-type silicon substrate and the base contact doping ele-
ment is phosphorous (P), arsenic (As), or antimony (Sb).

5. The method of claim 1, wherein said silicon substrate is
ap-type silicon substrate and the base contact doping element
is boron, gallium, or aluminum.

6. The method of claim 1, wherein said opening for base
contacts is performed using laser ablation.

7. The method of claim 6, wherein said laser ablation is
pulsed pico-second laser ablation.
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8. The method of claim 6, wherein said laser ablation is
pulsed femto-second laser ablation.

9. The method of claim 1, wherein said activating said
implanted dopant element is performed using furnace anneal-
ing.

10. The method of claim 1, wherein said activating said
implanted dopant element is performed using laser annealing.

11. The method of claim 10, wherein said laser annealing is
pulsed nanosecond laser annealing.

12. The method of claim 1, wherein the base and emitter
contacts are patterned in parallel linear regions.

13. The method of claim 1, where the base and emitter
contacts are formed as discrete islands.

14. The method of claim 1, wherein the percent of base
opening can be in the range from about 0.5% to 10%.

15. The method of claim 1, where laser ablation is carried
out using laser with wavelength being IR, green, or UV, or any
wavelength between.

16. The method of claim 1, where the surface concentration
of dopants in the base may be from 1x10'° to 1x10*'/cm3,
implanted at a depth of 0.1 to 5 pm.

17. A method for making a front surface field region in a
thin-film crystalline silicon substrate, the method compris-
ing:

implanting dopant atoms on the front side of a thin-film

crystalline silicon substrate, wherein the dopant element
has a peak concentration in the range of 1E16 to 1E20
cm™>; and

activating said implanted ions using laser annealing using

a continuous wave (CW) laser or a pulsed laser to form
a front surface field on said thin-film crystalline silicon
substrate.

18. The method of claim 17, wherein said dopant element
comprises at least one element selected from the group of
phosphorus, arsenic, antimony, and indium in conjunction
with an n-doped epitaxial silicon substrate.

19. The method of claim 17, wherein said front surface
field has a depth in the range of 10 angstroms to about 1
micron on the front side of said thin-film crystalline silicon
substrate.

20. The method of claim 17, wherein said thin-film crys-
talline silicon substrate is passivated with a passivation layer
deposited at a temperature less than 250° C.

21. The method of claim 20, wherein said passivation layer
is chosen from the group consisting of SiN, amorphous sili-
con/SiN stack, oxide/SiN stack, or silicon oxynitride with and
without an oxide underlayer, and silicon carbide.

22. The method of claim 20, wherein the passivation layer
is deposited after the ion implantation and laser anneal.

23. The method of claim 20, wherein the ion implantation
and anneal is carried out after the passivation layer is depos-
ited.

24. The method of claim 17, wherein the peak concentra-
tion of the dopant element is at the interface ofthe silicon film
and the said passivation layer.

25. The method of claims 17, wherein the incident angle of
the laser beam is controlled based on a dielectric stack on the
front surface of said substrate to prevent from heating the
back plane as it undergoes full internal reflection.

26. The method of claim 17, wherein said laser has a
wavelength less than or equal to 1064 nanometers.

27. The method of claim 17, wherein said dopant element
comprises at least one element selected from the group of
phosphorus, arsenic, antimony, and indium in conjunction
with an n-doped silicon substrate.

28. A method for making selective emitter regions in a
thin-film crystalline substrate, the method comprising:



US 9,318,644 B2

23

forming first openings in a parallel linear region pattern for
emitter contacts on a thin-film crystalline silicon sub-
strate;

selectively implanting ions of an dopant element in said

thin-film crystalline silicon substrate at said emitter con-
tacts;

activating said implanted ions to form doped emitter con-

tacts; and

forming metallization contacts on said emitter contacts and

base contacts on said thin-film crystalline silicon sub-
strate.

29. The method of claim 28, wherein said silicon substrate
is an n-type silicon substrate and said emitter contact doping
element is boron, gallium, or aluminum.

30. The method of claim 28, wherein said silicon substrate
is a p-type silicon substrate and said emitter contact doping
element is phosphorous (P), arsenic (As), indium (In), or
antimony (Sb).

31. The method of claim 28, wherein said silicon substrate
is a p-type silicon substrate and a base contact doping element
is boron, gallium, or aluminum.

32. The method of claim 28, wherein the opening for emit-
ter is performed using pulsed laser ablation.

33. The method of claim 28, wherein the implant activation
is performed using furnace annealing.

34. The method of claim 28, wherein the implant activation
is performed using laser annealing.

35. The method of claim 28, wherein said base and emitter
contacts are discrete islands.
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